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Abstract—Wideband wireless channel is a time dispersive channel 
and becomes strongly frequency-selective, physical arguments and 
growing experimental evidence suggest that generally, the channel is 
composed of a few dominant taps and a large part of taps is 
approximately zero, that means wireless channels exhibit a sparse 
multipath structure for wideband wireless system. In this paper, we 
formalize the notion of multipath sparsity and present a novel 
approach based on Orthogonal Matching Pursuit (OMP) in the 
theory of Compressed Sensing (CS) to estimate sparse multipath 
channels for Cognitive Radio (CR). Proposed channel estimation 
scheme exploits a channel’s delay-Doppler sparsity to reduce the 
number of pilots and, hence leads to increased spectral efficiency. 
The effectiveness of the proposed algorithm will be confirmed 
through comparisons with the existing Least Square (LS) channel 
estimation method. 

1. INTRODUCTION 

The immense growth of wireless access technologies calls for 
more and more spectrum resources, but most of the spectrum 
bands are already allocated to specific licensed services. It has 
been observed that, in some locations or at some time period 
of the day, 60 percent of the allocated spectrum may be sitting 
idle [1]. Besides this a lot of licensed bands, such as those for 
TV broadcasting, are not utilized properly, resulting in 
spectrum wastage [2]. Federal Communications Commission 
(FCC) has recommended that significantly greater efficiency 
could  be realized by developing wireless systems that can 
coexist with the Primary Users (PUs), generating minimal 
interference while taking advantage of the available spectrum 
resources [3]. A system that can reliably sense the spectral 
environment bandwidth, detects the presence and absence of 
active users and use the spectrum only if the communication 
does not interfere with active users is defined as the term 
cognitive radio system [4-8].  

The underlying sensing and spectrum shaping capabilities of 
OFDM, together with its flexibility and adaptive nature, make 
it the best transmission technology for CR systems. By 
deactivating subcarriers utilized by the PUs, interference 
between the PUs and the unlicensed users, also called 
Secondary Users (SUs)  can be mitigated [9,10]. However, the 
presence of deactivated subcarriers in the active subcarrier 
zone may possibly lead to non-contiguous sequence of the 

available subcarriers for the SUs and thereby complicate the 
design of efficient pilot symbols for channel estimation [9-12].  

In [13], the pilot design is formulated as an optimization 
problem minimizing an upper bound related to the Mean 
Square Error (MSE), where the pilot indexes are obtained by 
solving a series of 1-dimentional low complexity problems. 
Manasseh et al. [14], proposed a pilot design scheme using 
convex optimization together with the cross-entropy 
optimization to minimize the MSE.  Adaptation of parameters 
for wireless multicarrier-based CR systems is investigated in 
[15], where the cross-entropy method is demonstrated. 
However, all of them are based on the Least Square (LS) 
channel estimation. 

Recently, applications of theory of CS to channel estimation, 
have shown that, by exploring the sparse nature of wideband 
multipath channels, improved channel estimation performance 
and reduced pilot overhead can be achieved. The sparse 
channel estimation for OFDM systems has been intensively 
studied [16], [17], and many CS algorithms such as OMP, 
compressive sampling matching pursuit, and basis pursuit, 
have been applied for OFDM channel estimation. In this paper 
we are extending compressed channel estimation to OFDM-
based CR systems, which can improve the data rate and 
flexibility of SUs. Conventional methods for channel 
estimation are not able to exploit the inherent sparsity of the 
transmission channel which is due to the sparse distribution in 
space. In this paper, we will demonstrate that how CS theory 
provides a constructive way for exploiting the sparsity in order 
to reduce the number of pilots and get increased spectral 
efficiency. 

The rest of this paper is organized as follows– Section II 
presents OFDM-based CR system model. This model plays a 
key role in subsequent developments in the paper and sets the 
stage for the application of CS theory to the channel 
estimation. In Section III, first brief review of the theory of CS 
is provided then we formalize the notion of sparse multipath 
channels and then apply the compressed channel estimation. In 
Section IV, we succinctly summarize the performance 
advantages of proposed algorithm over traditional LS-based 
channel estimation. Finally, we conclude the paper in Section 
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V by discussing some of the finer technical details pertaining 
to the results presented in the paper and future scope. 

2. COGNITIVE RADIO SYSTEM MODEL 
Non-Contiguous Orthogonal Frequency Division Multiplexing 
(NC-OFDM) system as shown in figure 1, keeps sensing the 
surrounding spectrum environment. The sub-carrier is set to 
activate when the spectrum is idle, this state is called “on”. 
When the spectrum is not available the subcarrier is set to 
zero, this state is called “off”. At the transmitter side, high-
speed data stream first passes through the Quadrature Phase 
Shift Keying (QPSK) modulator and the modulated 

 
Fig. 1: OFDM-based CR system model 

high-speed data stream is allocated into N lower rate 
subcarriers after the serial to parallel (S/P) conversion. Unlike 
the general OFDM systems where a serial data stream is 
assigned to all subcarriers, NC-OFDM system considered is in 
the control of sub-carrier state, which is on or off. The data 
stream is only assigned to the sub-carriers whose state is on, 
and for the sub-carriers whose state is off no data is 
transmitted. Pilot design is performed, based on the results of 
spectrum sensing. Note that here, ideal spectrum sensing is 
assumed, without any false alarm or missing detection. Pilots 
are inserted and N-point Inverse Fast Fourier transform (IFFT) 
is taken. In order to reduce the Inter Signal Interference (ISI) 
and Inter Carrier Interference (ICI), Cyclic Prefix (CP) is 
inserted into each of NC-OFDM symbol, and after the Parallel 
to Serial conversion (P/S), the data is recovered into a serial 
data stream and the signal is transmitted after the RF 
modulation,  

At the receiver side, the received signal passes through the RF 
demodulator and after S/P converter the CP is removed. After 
the N-point Fast Fourier Transform (FFT), channel estimation 
is taken to combat multipath fading. The pilot symbol is 
removed and the data is read according to the sub-carrier state. 
At last, original data is recovered after QPSK demodulation.  

In a broadband wireless communication system, the actual 
bandwidth of the system is usually larger than the coherence 
bandwidth and the channel is usually frequency selective 
fading channel. 

The discrete-time channel model is: 

h(n) = ∑ hlδ(n − l)l−1
l=0                                (1) 

Where the channel impulse response vector h = [h0,h1,…,hl-

1]T remains unchanged in multiple OFDM 

The vector is K-sparse if the number of its nonzero elements is 
K, Discrete Fourier Transform (DFT) size is N and pilot sub-
carriers are P. The CP length is greater than the maximum 
possible path delay. OFDM symbol data X(n) contains 
mapping signals and pilot signals. At the receiver, we assume 
perfect timing and frequency synchronization. After removing 
CP, we apply Discrete Fourier Transform (DFT) to the 
received time-domain signal y

symbol period of 
time reflects the slow time variation of the channel. 

n

y = XH + Z = XWh + Z                             (2)     

 for n ϵ [0, N−1] to obtain for k 
ϵ [0, N − 1]. The received signal is N×1 sample vector: 

where X=diag(X(1), X(2),…, X(N)), N×1 matrix H is the 
sample value of channel frequency response. N×1 matrix Z is 
Additive White Gaussian Noise (AWGN). N×L matrix W is 
the first L columns of the DFT transform matrix:  

W = �
w00 ⋯ w(l−1)0

⋮ ⋱ ⋮
w0(N−1) ⋯ w(l−1)(n−1)

�                    (3) 

Where  wnl = e−j2πnl
N   

P×N matrix S selects the location of P pilot from the N 
subcarriers. N×N matrix S selects P rows corresponds to the 
pilot position from the unit matrix. The pilot signal recieved 
is: 

.  

yp = Xp Hp + Zp  = Xp Wp h + Zp       

where P × 1 matrix y

                    (4) 

p=Sy , P × P matrix Xp=SXS’ , P × L 
matrix Wp= SW , P × 1 matrix nP=S.In(4)yp, Xp and Wp

H

 are 
known.  We can reobtain system channel relation obtained in 
(4) by delay Doppler domain expression of the channel 
coefficients H. 

lk

Where  

= ∑ ∑ 𝐹𝐹[𝑚𝑚, 𝑖𝑖]𝑒𝑒−𝑗𝑗2П(𝑘𝑘𝑚𝑚𝐾𝐾 −
𝑙𝑙𝑖𝑖
𝑖𝑖 )𝐿𝐿=1

𝑖𝑖=0
𝐾𝐾−1
𝑚𝑚=0                     (5) 

F[m,i]=Xh(m,i)𝐴𝐴𝛶𝛶,𝑔𝑔
∗ (m,i/Nr

With the cross ambiguity function [21] 
A

)                          (6) 

γ,g(m,ε)=∑ 𝛾𝛾[𝑛𝑛]𝑔𝑔[𝑛𝑛 −𝑚𝑚]−∞
𝑛𝑛=∞ 𝑒𝑒−2П𝜀𝜀𝑛𝑛 .  The purpose of 

channel estimation is to estimate the channel frequency 
response H. 
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3. COMPRESSED CHANNEL ESTIMATION 

CS theory suggests that if the signal is compressible or in a 
transform basis is sparse, the high dimensional signal can be 
projected onto a lower dimensional space with an observation 
matrix which is uncorrelated with the transform basis, and 
then the original signal will be reconstructed with high 
probability, by solving an optimization problem with the small 
amount of projections. In the CS model, the signal x is not 
directly measured, but projected onto the observation matrix 
Φ=[Φ1,Φ2,…ΦM], and then the sampling vector y is 
obtained. The matrix form is 

y = Φx                                                 (7) 

where x is an N × 1 vector, Φ is an M × N matrix, and y is an 
M × 1 sampling vector. 

If signal x is sparse in the transform basis ψT = [ ψ1, ψ2,.. 
ψN] , it can be expressed as follows: 

x = ∑ ψkαk
N
k=1   = ψα                                  (8)             

where α is an N ×1 vector, ψ is an N × N sparse vector. (8) is 
substituted into (7): 

y = Φx = Φψα = Θα                                   (9) 

where M × N matrix Φ=ψΘ. The observation dimension M is 
far less than the signal dimension N, so the signal x can’t be 
solved with M sampling values of y. As α in (9) is sparse, with 
the sparse decomposition algorithm based on the theory of 
sparse decomposition, α can be solved by the inverse problem 
of solving (9), and be substituted into (8) to obtain the signal 
x. Consider the baseband channel model of (4). If we want to 
guarantee accurate channel estimation, Θ must satisfy two 
conditions. 

1) Restricted Isometry Property (RIP) [18] 
For signal reconstruction to be successful, Θ must satisfy 

 (1-δs) ||h||2
2  ≤  ||Θh||2

2  ≤  (1+δs) ||h||2
2                

(10) 

From CS perspective, research on the RIP of the training 
sequence has two important purposes. First, RIP-based 
training sequence is a sufficient condition to robust probe 
sparse channel dominant taps. Furthermore, in the process of 
error performance analysis, RIC of training sequences play 
important role to improve lower bound. 

2) Lower bound of length of training sequence Θ [19] 
Due to the channel fading and noise, to determine the length 
of training sequence Θ is important in terms of both spectrum 
efficiency and estimation robustness. Therefore, the length N 
of Θ must satisfy  

N ≥  C· K· (log L)4 μx
2                                (11) 

where C is a constant and μx=√L maxi,j|Xi,j| which is known 
as the maximum coherence between the ith column and jth

 Algorithm 1. OMP-CS  

Input: sensing matrix Θ, sampling vector y , sparse degree K ; 
Output: the K-sparse approximation α� of α ; 
Initialization: the residual r

 
column of Θ. 

OMP algorithms suggests the reconstruction under the 
conditions of a given iteration number, as the iterative process 
is forced to stop, OMP algorithm needs a lot of linear 
measurement to ensure accurate reconstruction. The basic idea 
of the OMP algorithm is to select the columns of Θ with 
greedy iterative algorithm, make sure the correlative value 
between the columns selected in each iteration and the current 
redundant vector is maximum, and then subtract the 
correlative value from the sampling vector and repeat iteration 
until the number of iterations achieves the sparse degree K.  

0=y , index set Λ0=Φ t=1;  
Step 1: find the maximum value of the inner product of 
residual r and the column of sensing matrix θ j the 
corresponding foot mark is λ, λ t =  argj=1..N max  | 〈rt−1 θj〉 |   
Step 2: renew the index set Λ t = Λ t-1 U{λ t} , the sensing 
matrix Θ t = [ Θ t-1, θλt ] 
Step 3: solve α� Rt = arg min || y- Θ t, α�  ||2 by least-square 
method; 
Step 4: renew the residual rt= y- Θ t α� Rt

 
OMP algorithm selects an atom in each iteration to update the 
atom collection, which will certainly pay a large time for 
reconstruction. The number of iterations is closely related to 
sparse degree K and the number of samples M, with their 
increase, time consumption will also increase significantly. 

Problem with algorithm 1 is that it is not adaptive, pre-
estimate of the sparse degree of the sparse signal is needed and 
the reconstruction accuracy is not satisfactory. In reality, the 
sparse degree of the sparse channel is usually unknown. Nam 
Naguyen et al. [20] proposed an algorithm in order to improve 
the accuracy of reconstruction, and make the algorithm 
adaptive. The signal reconstructed does not require any a 
priori information on signal sparse degree. The process is as 
follows: 

  t= t+1    
Step 5: if t > K , stop the iteration,  
             else do step 1. 

Algorithm 2. Extended  OMP-CS  
 
Input: Sampling matrix Θ , Sampled vector y , step size s ; 
Output: A K-sparse approximation α� of the input signal ; 
Initialization  α� = 0; r0 = y; F0 = Φ; I = s; k = 1; stage = 1 
   repeat  
     Sk= max (|Θ* rk-1, I |)  (Preliminary Select) 
     Ck= Fk-1U Sk  ( Make Candidate List) 
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     F = max( |Θ rk-1
    F= y- ΘΘF

∗  (Compute Residue) 
 |, I )  (Final Select) 

    if halting condition is true - quit the iteration; 
    else  
        if ||r||2 ≥ ||rk-1||2
        stage = stage+ 1， j = j  +1  (Update the stage index) 

  - stage switching 

       I  = stage × s (Update the size of finalist) 
     else 
         Fk
         r

=F  (Update the finalist) 
k

         k=k+1 
=r  (Update the residue) 

       end 
     end 
   repeat  until halting condition is true; 
   Output αF 
 

= ΘF
∗   y 

In the ExtOMP-CS algorithm, one key issue is how to choose 
the step size s. To avoid overestimation, the best choice is 
certainly s =1 if sparse degree K is unknown. However, a 
trade-off is there between step size s and the recovery speed, 
as smaller s requires more iterations. Unlike the OMP-CS 
algorithm, the iteration times of ExtOMP-CS algorithm is not 
certain and is related to step size s. The proposed algorithm 
introduces the idea of stage, reconstruction of signal is divided 
into several stages, and each stage contains a number of 
iterations. Therefore, computational complexity and 
computational time are higher in the ExtOMP-CS algorithm 
than OMP-CS algorithm. 

If N-length training sequence X satisfies the RIP and δ2S

||h-ĥ||

≤√2-
1, for any 2S-sparse channel vector h, ExtOMP-CS algorithm 
produces the channel estimator h� that satisfies 

2   ≤  C max{ε, 1/√S  ||h-ĥ2S||1 + ||z||2

for a given parameter ε . And h

}               (12) 

2S

For practical channels as well as transmit and receive pulses, 
the function F[m, i] in (6) is effectively supported in a sub 
domain of the delay-Doppler plane. This allows us to perform 
a sub sampling in the time-frequency domain. From (4), the 
receiver calculates channel coefficient estimates Ĥ

 is a best 2S-sparse 
approximation to h. 

jk

H(l,k)=Ĥ(l,k) + 𝑛𝑛(𝑙𝑙 ,𝑘𝑘)
𝑝𝑝(𝑙𝑙 ,𝑘𝑘)

                                   (13) 

 at the 
pilot positions (l, k) according to 

Thus, H(l,k) is known up to the additive noise terms nl,k/pl,k. 
We can hence use the extended OMP-CS algorithm to obtain 
an estimate of F[m, i]. From this estimate, estimates of all 
channel coefficients Hl,k

Regarding the choice of the pilot positions (l, k) ϵ 𝒫𝒫, we recall 
that these positions correspond to |𝒫𝒫| indices within the index 

range of the channel vector h. To be consistent with the CS 
framework, we select these positions uniformly at random. For 
good approximation quality, the number of pilots should 
satisfy condition (11) where μ=1. This bound is not useful for 
actually determining |𝒫𝒫| because of the constant C. However, 
the bound suggests that the required number of pilots scales 
only linearly with P of channel paths and the sparsity 
parameter K. In practice, the pilot positions will be randomly 
chosen and communicated to the receiver, only once before 
the beginning of data transmission. With high probability, they 
will lead to good performance for arbitrary channels with at 
most P paths. 

 are finally obtained. Thus, CS-based 
channel estimation is computationally feasible, albeit more 
complex than classical LS channel estimation. 

4. SIMULATION RESULTS AND DISCUSSION 

In this section we present numerical results to compare the 
performance of the proposed OMP-CS channel estimation 
method with that of classical LS channel estimation.  We are 
considering an OFDM-based CR system with P = 1024 
subcarriers, after spectrum sensing without any false alarm or 
missing detection  and deactivating those subcarriers occupied 
by PUs, we assume that there are 512 remaining OFDM 
subcarriers for SUs, including three noncontiguous subcarrier 
blocks, i.e., {1, 2, . . . , 256}, {513, 514, . . . , 640} and {897, 
898, . . . , 1024}, with the number of subcarriers in each block 
being 256, 128, and 128, respectively. We now evaluate the 
channel estimation performance using the designed pilot 
patterns. The Mean Square Error (MSE) performance for 
channel estimation and the Bit Error Rate (BER) performance 
for data detection are shown in Figures 2 and 3, respectively. 

A. Estimation Error 
The MSE performance of the proposed estimation method will 
be evaluated by simulations and compared with the MSE 
performance of LS. It is obvious that smaller MSE means 
more accurate channel estimation and vice versa. MSE is 
defined as     

MSE = 1/M ∑ �ℎ − ĥ𝑚𝑚�2
2𝑀𝑀

𝑚𝑚=1                              (14) 
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Fig. 2: Performance of the channel estimate  
MSE for different SNRs 

Fig. 2 depicts the MSE versus SNR. It is seen that the CS-
based proposed method significantly outperforms the least-
squares method. The extremely poor performance of the least-
squares method is due to the fact that the Shannon sampling 
theorem is violated by the pilot grid. In contrast, the CS based 
method is able to produce reliable channel estimates even far 
below the Shannon sampling rate. Compared with the LS 
method with 1024 pilots, we observe only a relatively small 
performance degradation of the CS-based method with 511 
pilots.  

B. Bit Error Rate (BER)  
Next, we make comparison of the BER performance of the 
proposed pilot symbols. Figure 3 shows BER performance of 
two schemes. The results show improved BER performance of 
the proposed design over the conventional LS design. 

 

Fig. 3: Comparison of the BER performances for different SNRs 

5. CONCLUSION 

We proposed a channel estimation technique based on the 
theory of CS. Our results demonstrate that CS makes it 
possible to exploit the delay-Doppler sparsity of wireless 
channels for a reduction of the number of pilots required for 
channel estimation within multicarrier systems. In this paper, 
we have introduced a novel sparse channel estimation method 
OMP-CS based on the CS theory. The extended OMP-CS 
method has both advantages of the greedy algorithm and 
convex program algorithm. On future work, we will consider 
an adaptive OMPCS channel estimation method which senses 
the random noise and other unexpected interferences. The 
complexity of our proposed design is slightly higher than that 
of the conventional scheme but combatively lower than that of 
the exhausted search scheme. 
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